94 research outputs found

    Learning as a phenomenon occurring in a critical state

    Full text link
    Recent physiological measurements have provided clear evidence about scale-free avalanche brain activity and EEG spectra, feeding the classical enigma of how such a chaotic system can ever learn or respond in a controlled and reproducible way. Models for learning, like neural networks or perceptrons, have traditionally avoided strong fluctuations. Conversely, we propose that brain activity having features typical of systems at a critical point, represents a crucial ingredient for learning. We present here a study which provides novel insights toward the understanding of the problem. Our model is able to reproduce quantitatively the experimentally observed critical state of the brain and, at the same time, learns and remembers logical rules including the exclusive OR (XOR), which has posed difficulties to several previous attempts. We implement the model on a network with topological properties close to the functionality network in real brains. Learning occurs via plastic adaptation of synaptic strengths and exhibits universal features. We find that the learning performance and the average time required to learn are controlled by the strength of plastic adaptation, in a way independent of the specific task assigned to the system. Even complex rules can be learned provided that the plastic adaptation is sufficiently slow.Comment: 5 pages, 5 figure

    Activity-dependent neuronal model on complex networks

    Get PDF
    Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behaviour: These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems. We present a recent model inspired in self-organized criticality, which consists of an electrical network with threshold firing, refractory period and activity-dependent synaptic plasticity. The model reproduces the critical behaviour of the distribution of avalanche sizes and durations measured experimentally. Moreover, the power spectra of the electrical signal reproduce very robustly the power law behaviour found in human electroencephalogram (EEG) spectra. We implement this model on a variety of complex networks, i.e. regular, small-world and scale-free and verify the robustness of the critical behaviour.Comment: 9 pages, 8 figure

    Dynamical scaling in branching models for seismicity

    Full text link
    We propose a branching process based on a dynamical scaling hypothesis relating time and mass. In the context of earthquake occurrence, we show that experimental power laws in size and time distribution naturally originate solely from this scaling hypothesis. We present a numerical protocol able to generate a synthetic catalog with an arbitrary large number of events. The numerical data reproduce the hierarchical organization in time and magnitude of experimental inter-event time distribution.Comment: 3 figures to appear on Physical Review Letter

    Brain modularity controls the critical behavior of spontaneous activity

    Full text link
    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.Comment: 5 pages, 6 figure

    Optimal percentage of inhibitory synapses in multi-task learning

    Full text link
    Performing more tasks in parallel is a typical feature of complex brains. These are characterized by the coexistence of excitatory and inhibitory synapses, whose percentage in mammals is measured to have a typical value of 20-30\%. Here we investigate parallel learning of more Boolean rules in neuronal networks. We find that multi-task learning results from the alternation of learning and forgetting of the individual rules. Interestingly, a fraction of 30\% inhibitory synapses optimizes the overall performance, carving a complex backbone supporting information transmission with a minimal shortest path length. We show that 30\% inhibitory synapses is the percentage maximizing the learning performance since it guarantees, at the same time, the network excitability necessary to express the response and the variability required to confine the employment of resources.Comment: 5 pages, 5 figure

    Critical bursts in filtration

    Full text link
    Particle detachment bursts during the flow of suspensions through porous media are a phenomenon that can severely affect the efficiency of deep bed filters. Despite the relevance in several industrial fields, little is known about the statistical properties and the temporal organization of these events. We present experiments of suspensions of deionized water carrying quartz particles pushed with a peristaltic pump through a filter of glass beads measuring simultaneously pressure drop, flux and suspension solid fraction. We find that the burst size distribution scales consistently with a power-law, suggesting that we are in the presence of a novel experimental realization of a self-organized critical system. Temporal correlations are present in the time series, alike in other phenomena as earthquakes or neuronal activity bursts, and also an analog to Omori's law can be shown. The understanding of bursts statistics could provide novel insights in different fields, e.g. in filter and petroleum industries.Comment: 7 pages, 9 figure

    Rattler-induced aging dynamics in jammed granular systems

    Full text link
    Granular materials jam when developing a network of contact forces able to resist the applied stresses. Through numerical simulations of the dynamics of the jamming process, we show that the jamming transition does not occur when the kinetic energy vanishes. Rather, as the system jams, the kinetic energy becomes dominated by rattlers particles, that scatter withing their cages. The relaxation of the kinetic energy in the jammed configuration exhibits a double power-law decay, which we interpret in terms of the interplay between backbone and rattlers particles.Comment: The paper has been accepted by the journal "Soft Matter

    Role of inhibitory neurons in temporal correlations of critical and supercritical spontaneous activity

    Full text link
    Experimental and numerical results suggest that the brain can be viewed as a system acting close to a critical point, as confirmed by scale-free distributions of relevant quantities in a variety of different systems and models. Less attention has received the investigation of the temporal correlation functions in brain activity in different, healthy and pathological, conditions. Here we perform this analysis by means of a model with short and long-term plasticity which implements the novel feature of different recovery rates for excitatory and inhibitory neurons, found experimentally. We evidence the important role played by inhibitory neurons in the supercritical state: We detect an unexpected oscillatory behaviour of the correlation decay, whose frequency depends on the fraction of inhibitory neurons and their connectivity degree. This behaviour can be rationalized by the observation that bursts in activity become more frequent and with a smaller amplitude as inhibition becomes more relevant.Comment: 15 pages, 6 figure

    Non-monotonic dependence of the friction coefficient on heterogeneous stiffness

    Full text link
    The complexity of the frictional dynamics at the microscopic scale makes difficult to identify all of its controlling parameters. Indeed, experiments on sheared elastic bodies have shown that the static friction coefficient depends on loading conditions, the real area of contact along the interfaces and the confining pressure. Here we show, by means of numerical simulations of a 2D Burridge-Knopoff model with a simple local friction law, that the macroscopic friction coefficient depends non-monotonically on the bulk elasticity of the system. This occurs because elastic constants control the geometrical features of the rupture fronts during the stick-slip dynamics, leading to four different ordering regimes characterized by different orientations of the rupture fronts with respect to the external shear direction. We rationalize these results by means of an energetic balance argument
    corecore